Using the negative binomial distribution, it is found that:
a) [tex]E(X) = 15[/tex]
b) [tex]Var(X) = 6.67[/tex]
c) [tex]P(X = 12) = 0.0883[/tex]
Negative binomial distribution:
It is the number of trials until q successes of a binomial variable, with p probability of success.
The expected value is:
[tex]E(X) = \frac{q}{p}[/tex]
The variance is:
[tex]Var(X) = \frac{pq}{(1 - p)^2}[/tex]
The probability mass function is:
[tex]P(X = x) = C_{x+q-1,q-1}(1 - p)^xp^q[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this problem, the parameters are: [tex]q = 6, p = 0.4[/tex].
Item a:
[tex]E(X) = \frac{6}{0.4} = 15[/tex]
Item b:
[tex]Var(X) = \frac{6(0.4)}{(1 - 0.4)^2} = 6.67[/tex]
Item c:
[tex]P(X = 12) = C_{17,5}(0.6)^12(0.4)^6 = 0.0883[/tex]
To learn more about the negative binomial distribution, you can take a look at https://brainly.com/question/15246027