Respuesta :

Answer:

Option 4:  A ║B

Step-by-step explanation:

Given the following statements:

[tex]\displaystyle\mathsf{\overline{X}}[/tex] is ⊥ [tex]\displaystyle\mathsf{\overline{A}}[/tex]

[tex]\displaystyle\mathsf{\overline{X}}[/tex] is ⊥ [tex]\displaystyle\mathsf{\overline{B}}[/tex]

We can apply the Lines Perpendicular to a Transversal Theorem, which states that if two lines intersect and are perpendicular to that same transversal, then those two lines are parallel.  

In the given conditional statement, [tex]\displaystyle\mathsf{\overline{X}}[/tex] ⊥ [tex]\displaystyle\mathsf{\overline{A}}[/tex]  and  [tex]\displaystyle\mathsf{\overline{X}}[/tex] ⊥ [tex]\displaystyle\mathsf{\overline{B}}[/tex], line [tex]\displaystyle\mathsf{\overline{X}}[/tex] is the transversal that cuts through both lines  [tex]\displaystyle\mathsf{\overline{A}}[/tex] and [tex]\displaystyle\mathsf{\overline{B}}[/tex].  

Therefore, lines  [tex]\displaystyle\mathsf{\overline{A}}[/tex] and [tex]\displaystyle\mathsf{\overline{B}}[/tex] are perpendicular to line [tex]\displaystyle\mathsf{\overline{X}}[/tex].  Hence, by the Lines Perpendicular to a Transversal Theorem,  [tex]\displaystyle\mathsf{\overline{A}}[/tex][tex]\displaystyle\mathsf{\overline{B}}[/tex].  

RELAXING NOICE
Relax