Need an answer here please

Answer:
Option 4: A ║B
Step-by-step explanation:
Given the following statements:
[tex]\displaystyle\mathsf{\overline{X}}[/tex] is ⊥ [tex]\displaystyle\mathsf{\overline{A}}[/tex]
[tex]\displaystyle\mathsf{\overline{X}}[/tex] is ⊥ [tex]\displaystyle\mathsf{\overline{B}}[/tex]
We can apply the Lines Perpendicular to a Transversal Theorem, which states that if two lines intersect and are perpendicular to that same transversal, then those two lines are parallel.
In the given conditional statement, [tex]\displaystyle\mathsf{\overline{X}}[/tex] ⊥ [tex]\displaystyle\mathsf{\overline{A}}[/tex] and [tex]\displaystyle\mathsf{\overline{X}}[/tex] ⊥ [tex]\displaystyle\mathsf{\overline{B}}[/tex], line [tex]\displaystyle\mathsf{\overline{X}}[/tex] is the transversal that cuts through both lines [tex]\displaystyle\mathsf{\overline{A}}[/tex] and [tex]\displaystyle\mathsf{\overline{B}}[/tex].
Therefore, lines [tex]\displaystyle\mathsf{\overline{A}}[/tex] and [tex]\displaystyle\mathsf{\overline{B}}[/tex] are perpendicular to line [tex]\displaystyle\mathsf{\overline{X}}[/tex]. Hence, by the Lines Perpendicular to a Transversal Theorem, [tex]\displaystyle\mathsf{\overline{A}}[/tex] ║ [tex]\displaystyle\mathsf{\overline{B}}[/tex].