Respuesta :
Answer:
[tex]\displaystyle m = \frac{-7}{25}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
Coordinate Planes
- Coordinates (x, y)
Slope Formula: [tex]\displaystyle m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
Point (-8, 11)
Point (17, 4)
Step 2: Find slope m
Simply plug in the 2 coordinates into the slope formula to find slope m.
- Substitute in points [Slope Formula]: [tex]\displaystyle m = \frac{4 - 11}{17 - -8}[/tex]
- [Order of Operations] Evaluate: [tex]\displaystyle m = \frac{-7}{25}[/tex]
[tex]\huge{\purple{\underline{\underline{\bf{\pink{ANSWER:-}}}}}}[/tex]
We've been asked to find slope of the following coordinates which are (-8,11) and (17,4).
The standard formula to calculate slope is given by,
[tex]:\implies\footnotesize\rm{Slope = \frac{y_2 - y_1}{x_2 - x_1} }[/tex]
[tex]:\implies\footnotesize\rm{Slope = \frac{4 - 11}{17 - ( - 8)} }[/tex]
[tex]:\implies\footnotesize\rm{Slope = \frac{ - 7}{17 + 8} }[/tex]
[tex]:\implies\footnotesize\rm{Slope = \frac{ - 7}{25} }[/tex]
- The slope is -7/25.