Respuesta :

Space

Answer:

[tex]\displaystyle m = \frac{-7}{25}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

Coordinate Planes

  • Coordinates (x, y)

Slope Formula: [tex]\displaystyle m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

Point (-8, 11)

Point (17, 4)

Step 2: Find slope m

Simply plug in the 2 coordinates into the slope formula to find slope m.

  1. Substitute in points [Slope Formula]:                                                              [tex]\displaystyle m = \frac{4 - 11}{17 - -8}[/tex]
  2. [Order of Operations] Evaluate:                                                                      [tex]\displaystyle m = \frac{-7}{25}[/tex]

[tex]\huge{\purple{\underline{\underline{\bf{\pink{ANSWER:-}}}}}}[/tex]

We've been asked to find slope of the following coordinates which are (-8,11) and (17,4).

The standard formula to calculate slope is given by,

[tex]:\implies\footnotesize\rm{Slope = \frac{y_2 - y_1}{x_2 - x_1} }[/tex]

[tex]:\implies\footnotesize\rm{Slope = \frac{4 - 11}{17 - ( - 8)} }[/tex]

[tex]:\implies\footnotesize\rm{Slope = \frac{ - 7}{17 + 8} }[/tex]

[tex]:\implies\footnotesize\rm{Slope = \frac{ - 7}{25} }[/tex]

  • The slope is -7/25.
ACCESS MORE