Respuesta :
An iterated integral is the outcome of taking integrals toward a function of more than one variable in such a way that part of the variables is treated as constants for each of the integrals.
From the given parameters, we are to write out five iterations for a triple integral;
[tex]\mathbf{\int ^8_0\ \int^{x^2}_{0} \ \int^y_0 \ \ f(x, y, z) \ dz dy dx }[/tex]
where;
- the region is bounded by 0 ≤ z ≤ y, 0 ≤ y ≤ x², 0 ≤ x ≤ 8.
Thus, since x, y, z are functions of at least one variable, we can have the following iterations:
- [tex]\mathbf{\int^{64}_{0} \ \int^{8}_{\sqrt{y}} \ \int^{y}_{0} \ \ f(x,y,z) dz dxdy}[/tex]
- [tex]\mathbf{\int^{64}_{0} \ \int^{y}_{0} \ \int^{8}_{\sqrt{y}} \ \ f(x,y,z)\ dxdzdy}[/tex]
- [tex]\mathbf{\int^{64}_{0} \ \int^{64}_{z} \ \int^{8}_{\sqrt{y}} \ \ f(x,y,z)\ dxdydz}[/tex]
- [tex]\mathbf{\int^{8}_{0} \ \int^{x^2}_{0} \ \int^{x^2}_{z} \ \ f(x,y,z)\ dydzdx}[/tex]
- [tex]\mathbf{\int^{64}_{0} \ \int^{8}_{\sqrt{z}} \ \int^{x^2}_{z} \ \ f(x,y,z)\ dydxdz}[/tex]
Learn more about iterated integrals here:
https://brainly.com/question/7009095