Please help me prove that ED is congruent to BA! I thought I had it right by proving right and vertical angles, but I’m missing something

Step-by-step explanation:
[tex]\overline{DA} \text{ bisects } \overline{EB}[/tex] is given
[tex]\overline{BC} \cong \overline{EC}[/tex] definition of bisect
[tex]\overline{EB} \perp \overline{ED}, \, \overline{EB} \perp \overline{BA}[/tex] are both given
[tex]\angle B, \, \angle E \text{ are right angles}[/tex] definition of perpendicular
[tex]\angle B \cong \angle E[/tex] because all right angles are congruent
[tex]\angle{ACB} \cong \angle{DCE}[/tex] vertical angles are congruent
[tex]\triangle{ACB} \cong \triangle{DCE}[/tex] ASA (angle-side-angle)
[tex]\overline{ED} \cong \overline{BA}[/tex] CPCTC (corresponding parts of congruent triangles are congruent)