hlo preparation for exam help with this question?? °_*!
If p/q=q/r then prove that
p3+q3+r3=(1/p3+1/q3+1/r3)p2q2r2 ​

hlo preparation for exam help with this question If pqqr then prove thatp3q3r31p31q31r3p2q2r2 class=

Respuesta :

Hope you could get an idea from here.

Doubt clarification - use comment section.

Ver imagen Аноним

The equation [tex]p^3+q^3+r^3=(\frac{1}{p^3}+\frac{1}{q^3}+\frac{1}{r^3})p^2q^2r^2[/tex] has been proved to be true

The equation is given as:

[tex]\frac pq = \frac qr[/tex]

Cross multiply

[tex]pr = q^2[/tex]

Rewrite as:

[tex]q^2 = pr[/tex]

Also, we have:

[tex]p^3+q^3+r^3=(\frac{1}{p^3}+\frac{1}{q^3}+\frac{1}{r^3})p^2q^2r^2[/tex]

Substitute [tex]q^2 = pr[/tex]

[tex]p^3+q^3+r^3=(\frac{1}{p^3}+\frac{1}{q^3}+\frac{1}{r^3})p^3r^3[/tex]

Expand

[tex]p^3+q^3+r^3=\frac{1}{p^3} \times p^3r^3 +\frac{1}{q^3} \times p^3r^3 +\frac{1}{r^3} \times p^3r^3[/tex]

Simplify

[tex]p3+q3+r3=r^3 +\frac{1}{q^3} \times p^3r^3 + p^3[/tex]

Rewrite as:

[tex]p3+q3+r3=r^3 +\frac{1}{q^3} \times (pr)^3 + p^3[/tex]

Substitute [tex]pr = q^2[/tex]

[tex]p3+q3+r3=r^3 +\frac{1}{q^3} \times (q^2)^3 + p^3[/tex]

[tex]p3+q3+r3=r^3 +\frac{1}{q^3} \times q^6 + p^3[/tex]

Divide q^6 by q^3

[tex]p3+q3+r3=r^3 +q^3 + p^3[/tex]

Rewrite the equation as:

[tex]p3+q3+r3=p^3 +q^3 + r^3[/tex]

Hence, the equation has been proved

Read more about equations at:

https://brainly.com/question/13729904

ACCESS MORE