∠A and \angle B∠B are vertical angles. If m\angle A=(2x-10)^{\circ}∠A=(2x−10) ∘ and m\angle B=(x+8)^{\circ}∠B=(x+8) ∘ , then find the measure of \angle A∠A.

Respuesta :

Answer:

m∠B=52

Step-by-step explanation:

Two or more angles are said to be complementary if they sum up to 90 degrees.

Given that angles A and B are complementary, then:

\begin{gathered}\angle A+\angle B=90^\circ\\m\angle A=(2x+18)^{\circ}\\m\angle B=(6x-8)^{\circ}\\$Therefore:\\(2x+18)^{\circ}+(6x-8)^{\circ}=90^\circ\\2x+6x+18-8=90^\circ\\8x+10^\circ=90^\circ\\8x=90^\circ-10^\circ\\8x=80^\circ\\$Divide both sides by 8\\x=10^\circ\\$Therefore:\\m\angle B=(6x-8)^{\circ}\\m\angle B=(6(10)-8)^{\circ}\\=60-8\\m\angle B=52^{\circ}\end{gathered}

ACCESS MORE