Help pleaseeee :,) 100 points

Answer:
x = 125
Step-by-step explanation:
Given equation:
[tex]\log_224-\log_23=\log_5x[/tex]
[tex]\textsf{Apply the Quotient log law}: \quad \log_ax - \log_ay=\log_a\frac{x}{y}[/tex]
[tex]\implies \log_2\left(\dfrac{24}{3}\right)=\log_5x[/tex]
[tex]\implies \log_28=\log_5x[/tex]
Rewrite 8 as 2³:
[tex]\implies \log_2(2^3)=\log_5x[/tex]
[tex]\textsf{Apply the Power log law}: \quad \log_ax^n=n\log_ax[/tex]
[tex]\implies 3\log_22=\log_5x[/tex]
[tex]\textsf{Apply log law}: \quad \log_aa=1[/tex]
[tex]\implies 3(1)=\log_5x[/tex]
[tex]\implies \log_5x=3[/tex]
[tex]\textsf{Apply log law}: \quad \log_ab=c \iff a^c=b[/tex]
[tex]\implies 5^3=x[/tex]
[tex]\implies x=125[/tex]