Respuesta :
We are given –
- x = 6
In case of 1st equation –
[tex]\qquad[/tex] [tex]\twoheadrightarrow\bf 6 \times x = 6 × 6 [/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf 6\times x = 12 [/tex]
[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow\bf L.H.S = R.H.S}[/tex]
- Hence, 6x = 12 is true! ☑
In case of 2nd equation –
[tex]\qquad[/tex] [tex]\twoheadrightarrow\bf 17 – x = 11 [/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf 17-x = 17-6 [/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf 17-x = 11 [/tex]
[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow\bf L.H.S = R.H. S} [/tex]
- Hence, 17 – x = 11 is true! ☑
In case of 3rd equation –
[tex]\qquad[/tex] [tex]\twoheadrightarrow\bf\dfrac{x }{2} = 3[/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf \dfrac{x}{2}=\cancel{ \dfrac{6}{2}}[/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf \dfrac{x} {2}=3[/tex]
[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow\bf L.H.S=R.H.S}[/tex]
- Hence, x/2 = 3 is true! ☑
In case of 4th equation –
[tex]\qquad[/tex] [tex]\twoheadrightarrow\bf \dfrac{19}{ 3} = x[/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf \cancel{\dfrac{19}{ 3} }= x[/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf 6.33= x[/tex]
[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow\bf L.H.S≠R.H.S}[/tex]
- Hence, 19/3 = x is false ✖
In case of 5th equation –
[tex]\qquad[/tex] [tex]\twoheadrightarrow\bf 5 + x = 11[/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf 5+ x = 6 +5 [/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf 5+x= 11[/tex]
[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow\bf L.H.S=R.H.S}[/tex]
- Hence, 5+x = 6 is true! ☑