Respuesta :

Answer:

[tex](-\infty,\, -6)[/tex] and [tex](-2,\, \infty)[/tex].

Step-by-step explanation:

A continuous function is increasing if and only if its first derivative is positive.

Differentiate [tex](x^{3} + 12\, x^{2} + 36\, x)[/tex] with respect to [tex]x[/tex] to find the first derivative of this function.

[tex]\begin{aligned}& \frac{d}{d x} \left[x^{3} + 12\, x^{2} + 36\, x\right] \\ =\; & 3\, x^{2} + 24\, x + 36 \\ =\; & 3\, (x^{2} + 8\, x + 12)\end{aligned}[/tex].

In other words, the given function is increasing if and only if [tex]3\, (x^{2} + 8\, x + 12) > 0[/tex].

Notice that [tex]12 = 2 \times 6[/tex] while [tex](2 + 6) = 8[/tex]. Thus, the quadratic expression [tex]3\, (x^{2} + 8\, x + 12)[/tex] may be rewritten as:

[tex]\begin{aligned} & 3\, (x^{2} + 8\, x + 12) \\ =\; & 3\, (x + 2) \, (x + 6)\end{aligned}[/tex].

Thus, the requirement that [tex]3\, (x^{2} + 8\, x + 12) > 0[/tex] is equivalent to [tex]3\, (x + 2) \, (x + 6) > 0[/tex], which is true if and only if:

  • either [tex](x + 2) < 0[/tex] and [tex](x + 6) < 0[/tex], or
  • [tex](x + 2) > 0[/tex] and [tex](x + 6) > 0[/tex].

Equivalently, [tex]3\, (x + 2) \, (x + 6) > 0[/tex] is true if and only if:

  • [tex]x < (-2)[/tex] and [tex]x < (-6)[/tex], or
  • [tex]x > (-2)[/tex] and [tex]x > (-6)[/tex].

The first requirement simplifies to [tex]x < (-6)[/tex] and corresponds to the interval [tex](-\infty, \, -6)[/tex].

The second requirement simplifies to [tex]x > (-2)[/tex], which corresponds to the interval [tex](-2,\, \infty)[/tex].

Thus, the given function is increasing on the interval [tex](-\infty, \, -6)[/tex] and [tex](-2,\, \infty)[/tex].

ACCESS MORE