Respuesta :
The equation of the quadratic model is [tex]f(x) = -16x^2 + 99x+ 6[/tex], and the estimated height, after 0.25 seconds in 19 feet
A quadratic regression equation is represented as:
[tex]f(x) =ax^2 + bx + c[/tex]
Where:
[tex]a = \frac{ [ \sum x^2 y * \sum xx ] - [\sum xy * \sum xx^2 ] }{ [ \sum xx * \sum x^2x^2] - [\sum xx^2 ]^2 }[/tex]
[tex]b = \frac{ [ \sum xy * \sum x^2x^2 ] - [\sum x^2y * \sum xx^2 ] }{ [ \sum xx * \sum x^2x^2] - [\sum xx^2 ]^2 }[/tex]
[tex]c = [ \frac{\sum y }{ n} ] - { b \times [ \frac{\sum x }{ n} ] } - { a * [ \frac{\sum x^2}{ n} ] }[/tex]
Using a graphing calculator, we have:
[tex]a = -16.429[/tex]
[tex]b= 81.071[/tex]
[tex]c = 0.357[/tex]
Approximate to the nearest integers
[tex]a = -16[/tex]
[tex]b = 81[/tex]
[tex]c = 0[/tex]
Substitute these values in [tex]f(x) =ax^2 + bx + c[/tex]
[tex]f(x) = -16x^2 + 81x[/tex]
Substitute 0.25 for x to calculate the estimated height, after 0.25 seconds
[tex]f(0.25) = -16(0.25)^2 + 81(0.25)[/tex]
[tex]f(0.25) = 19.25[/tex]
Approximate
[tex]f(0.25) = 19[/tex]
Hence, the equation of the quadratic model is [tex]f(x) = -16x^2 + 99x+ 6[/tex], and the estimated height, after 0.25 seconds in 19 feet
Read more about quadratic regression models at:
https://brainly.com/question/25794160