Respuesta :
Answer:
[tex]to \: know \: the \: solution[/tex]
[tex]refer \: to \: the \: above \: attatchment[/tex]


[tex]\huge \bf༆ Answer ༄[/tex]
Here's the solution ~
- [tex] \sf 2\sqrt{x} - 14 = \dfrac{288}{ \sqrt{x} } [/tex]
- [tex] \sf \sqrt{x} (2 \sqrt{x} - 14) = 288[/tex]
- [tex] \sf 2x - 14 \sqrt{x} - 288 = 0[/tex]
- [tex] \sf2x - 32 \sqrt{x} + 18 \sqrt{x} - 288 = 0[/tex]
- [tex] \sf2 \sqrt{x} ( \sqrt{x} - 16) + 18( \sqrt{x } - 16 ) = 0[/tex]
- [tex] \sf(2 \sqrt{x} + 18) ( \sqrt{x} - 16) = 0[/tex]
There are two cases now ~
Case #1
- [tex] \sf2 \sqrt{x} + 18 = 0[/tex]
- [tex] \sf2 \sqrt{x} = - 18[/tex]
- [tex] \sf \sqrt{x} = - 18 \div 2[/tex]
- [tex] \sf \sqrt{x} = - 9[/tex]
- [tex] \sf x = ( - 9) {}^{2} [/tex]
- [tex] \sf{x = 81}[/tex]
Case #2
- [tex] \sf \sqrt{x} - 16 = 0[/tex]
- [tex] \sf \sqrt{x} = 16[/tex]
- [tex] \sf x = (16) {}^{2} [/tex]
- [tex] \sf{x = 256}[/tex]