Respuesta :

Answer:

  • 3096

Step-by-step explanation:

Given:

  • [tex]3x-\frac{1}{4y}=24[/tex]

Rewrite it as:

  • [tex]3x=\frac{1}{4y}+24[/tex]
  • [tex]x=\frac{1}{12y}+8[/tex]

Simplify the expression:

  • [tex]8x(6x - \frac{1}{y} ) + \frac{1}{12y^2} (4 - 3y + 36xy^2) =[/tex]
  • [tex]8(\frac{1}{12y}+8)(6(\frac{1}{12y}+8) - \frac{1}{y} ) + \frac{1}{3y^2} - \frac{1}{4y} + 3x =[/tex]
  • [tex]8(\frac{1}{12y}+8)(48- \frac{1}{2y} ) + \frac{1}{3y^2} - \frac{1}{4y} + 24 + \frac{1}{4y} =[/tex]
  • [tex]8(\frac{4}{y}+8*48- \frac{1}{24y^2} -\frac{4}{y} ) + \frac{1}{3y^2} + 24 =[/tex]
  • [tex]8(384-\frac{1}{24y^2}) + \frac{1}{3y^2} + 24 =[/tex]
  • [tex]8*384-\frac{1}{3y^2} + \frac{1}{3y^2} + 24 =[/tex]
  • [tex]3072+24=[/tex]
  • [tex]3096[/tex]