Respuesta :
Answer:
[tex]\displaystyle \int {x(2 - x)} \, dx = \frac{-x^2(x - 3)}{3} + C[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
Terms/Coefficients
- Factoring/Expanding
Calculus
Integration
- Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
*Note:
Antiderivative = Integral
Step 1: Define
Identify.
[tex]\displaystyle \int {x(2 - x)} \, dx[/tex]
Step 2: Integrate
- [Integrand] Expand: [tex]\displaystyle \int {x(2 - x)} \, dx = \int {2x - x^2} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle \int {x(2 - x)} \, dx = \int {2x} \, dx - \int {x^2} \, dx[/tex]
- [Left Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {x(2 - x)} \, dx = 2 \int {x} \, dx - \int {x^2} \, dx[/tex]
- [Integrals] Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x(2 - x)} \, dx = 2 \bigg( \frac{x^2}{2} \bigg) - \frac{x^3}{3} + C[/tex]
- Simplify: �� [tex]\displaystyle \int {x(2 - x)} \, dx = x^2 - \frac{x^3}{3} + C[/tex]
- Factor: [tex]\displaystyle \int {x(2 - x)} \, dx = x^2 \bigg( 1 - \frac{x}{3} \bigg) + C[/tex]
- Rewrite: [tex]\displaystyle \int {x(2 - x)} \, dx = \frac{-x^2(x - 3)}{3} + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration