The percentage of apple juice is an illustration of ratios and proportions.
It needs 45 kilograms of apple to increase it to 25%
The given parameter is:
30 kg in 10%
Let the additional kilograms of apple be represented with x.
So, we have:
(x + 30 kg) in 25%
The kilogram of apple is in proportion with the percentage used.
So, we have:
[tex]\mathbf{30kg : 10\% = (x + 30)kg : 25\%}[/tex]
Express as fraction
[tex]\mathbf{\frac{30kg }{ 10\% }= \frac{(x + 30)kg }{ 25\%}}[/tex]
Cancel out common units
[tex]\mathbf{\frac{30 }{ 10\% }= \frac{x + 30}{ 25\%}}[/tex]
Express percentage as decimals
[tex]\mathbf{\frac{30 }{ 0.10 }= \frac{x + 30}{ 0.25}}[/tex]
Multiply both sides by 0.25
[tex]\mathbf{\frac{30 }{ 0.10 } \times 0.25= x + 30}[/tex]
So, we have:
[tex]\mathbf{75= x + 30}[/tex]
Subtract 30 from both sides
[tex]\mathbf{45= x}[/tex]
Rewrite as:
[tex]\mathbf{x = 45}[/tex]
Hence, it needs 45 kilograms of apple to increase it to 25%
Read more about ratios and proportions at:
https://brainly.com/question/13114933