[tex]\underline{ \bf \huge Appropriate \: Question :-}[/tex]
[tex] \: \dfrac{3x}{10} = 6[/tex]
[tex] \underline{\huge\bf \: R equired \: Solution:-} [/tex]
We need to find the value of [tex]\it x [/tex] on the Given equation.
[tex] \underline{\bf \: Multiply \: both \: sides \: by \: 10 :} [/tex]
[tex] : \implies \tt \: \dfrac{3x}{10} \times 10 = 6 \times 10[/tex]
On cancelling 10 and 10,1 is the result, which equals to 3x/1, that has no value of 1 as the denominator is 1.
[tex] : \implies \tt \dfrac{3x}{ \cancel{10}} \times \cancel{ 10} = 6 \times 10[/tex]
On multiplying,60 is the result.
[tex] : \implies \tt \: {3x} = 60[/tex]
[tex] \underline{\bf \: Divide \: both \: sides \: by \: 3 : }[/tex]
[tex] : \implies \tt \: \dfrac{3x}{3} = \dfrac{60}{3} [/tex]
Use cancellation method to cancel 3 and 3,and then cancel 60 and 3, which results to 20.
[tex] : \implies \tt \: {}^{1} \dfrac{ \cancel3x}{ \cancel3} = \dfrac{ \cancel{60}}{ \cancel3} {}^{20} [/tex]
[tex] : \implies \tt \: 1x = 20[/tex]
[tex] : \implies \tt \: x = 20[/tex]
[tex]\qquad \boxed{\boxed{\sf x = 20}}[/tex]
Henceforth, the value of x is 20.
________________________________
I hope this helps !
Please let me know if you have any questions.