Respuesta :

[tex]\underline{ \bf \huge Appropriate \: Question :-}[/tex]

[tex] \: \dfrac{3x}{10} = 6[/tex]

[tex] \underline{\huge\bf \: R equired \: Solution:-} [/tex]

We need to find the value of [tex]\it x [/tex] on the Given equation.

[tex] \underline{\bf \: Multiply \: both \: sides \: by \: 10 :} [/tex]

[tex] : \implies \tt \: \dfrac{3x}{10} \times 10 = 6 \times 10[/tex]

On cancelling 10 and 10,1 is the result, which equals to 3x/1, that has no value of 1 as the denominator is 1.

[tex] : \implies \tt \dfrac{3x}{ \cancel{10}} \times \cancel{ 10} = 6 \times 10[/tex]

On multiplying,60 is the result.

[tex] : \implies \tt \: {3x} = 60[/tex]

[tex] \underline{\bf \: Divide \: both \: sides \: by \: 3 : }[/tex]

[tex] : \implies \tt \: \dfrac{3x}{3} = \dfrac{60}{3} [/tex]

Use cancellation method to cancel 3 and 3,and then cancel 60 and 3, which results to 20.

[tex] : \implies \tt \: {}^{1} \dfrac{ \cancel3x}{ \cancel3} = \dfrac{ \cancel{60}}{ \cancel3} {}^{20} [/tex]

[tex] : \implies \tt \: 1x = 20[/tex]

[tex] : \implies \tt \: x = 20[/tex]

[tex]\qquad \boxed{\boxed{\sf x = 20}}[/tex]

Henceforth, the value of x is 20.

________________________________

I hope this helps !

Please let me know if you have any questions.