Respuesta :

The second differential of the function is 3/7

Given the differential function [tex](x +2y)=\frac{dy}{dx} (2x-y)[/tex]

Differentiate both sides with respect to x implicitly

[tex](x +2y)=\frac{dy}{dx} (2x-y)[/tex]

[tex]1+2y'=y"(2x-y)+y'(2-y') \\y''=\frac{1+2y'}{(2x-y)+y'(2-y') }[/tex]

Get the first derivative at the point (3, 0)

[tex]y'=\frac{2x-y}{x+2y} \\y'=\frac{2(3)-0}{0+2(3)}\\y'=\frac{6}{6} \\y'=1[/tex]

Substitute into the second derivative to have:

[tex]y''=\frac{1+2y'}{(2x-y)+y'(2-y') }\\y''=\frac{1+2(1)}{(2(3)-0)+(1)(2-(1)) }\\y''=\frac{3}{6+1} \\y''=\frac{3}{7}[/tex]

Hence the second differential of the function is 3/7

learn more on differential equation here; https://brainly.com/question/18760518

Complete question:

If (x 2y)dy/dx=2x-y what is the value of [tex]\frac{d^2y}{dx^2}[/tex] the point (3,0)