Respuesta :
Revenue, profit and expenses are all integral parts of a company's balance sheet
- The expense in terms of q is [tex]\mathbf{E = 8q + 12000}[/tex]
- The expense in terms of p is [tex]\mathbf{E = -80p + 172000}[/tex]
- The revenue in terms of p is [tex]\mathbf{R = -10p^2 + 20000p}[/tex]
- The profit in terms of p [tex]\mathbf{P =-10p^2 + 20080p - 172000}[/tex]
- The price that yields the maximum profit is $1004
- The maximum profit is $9908160
The expense function is given as:
[tex]\mathbf{E = 8q + 12000}[/tex]
The demand function is given as:
[tex]\mathbf{p = -10p + 20000}[/tex]
(a) The expense in terms of q
This is already given as: [tex]\mathbf{E = 8q + 12000}[/tex]
(b) The expense in terms of p
Substitute -10p + 20000 for p in [tex]\mathbf{E = 8q + 12000}[/tex]
[tex]\mathbf{E = 8(-10p + 20000) + 12000}[/tex]
Expand
[tex]\mathbf{E = -80p + 160000 + 12000}[/tex]
[tex]\mathbf{E = -80p + 172000}[/tex]
(c) The revenue in terms of P
This is calculated as:
[tex]\mathbf{R = p \times q}[/tex]
So, we have:
[tex]\mathbf{R = p \times (-10p + 20000)}[/tex]
Expand
[tex]\mathbf{R = -10p^2 + 20000p}[/tex]
(d) The profit in terms of p
We have:
[tex]\mathbf{R = -10p^2 + 20000p}[/tex] and [tex]\mathbf{E = -80p + 172000}[/tex]
So, the profit P is calculated as:
[tex]\mathbf{P =R - E}[/tex]
This gives
[tex]\mathbf{P =-10p^2 + 20000p +80p - 172000}[/tex]
[tex]\mathbf{P =-10p^2 + 20080p - 172000}[/tex]
(e) The price that yields maximum profit
In (d), we have:
[tex]\mathbf{P =-10p^2 + 20080p - 172000}[/tex]
The maximum price is calculated using:
[tex]\mathbf{p = -\frac{b}{2a}}[/tex]
Where:
[tex]\mathbf{b =20080}[/tex]
[tex]\mathbf{a = -10}[/tex]
So, the equation becomes
[tex]\mathbf{p = -\frac{20080}{2 \times -10}}[/tex]
[tex]\mathbf{p = 1004}[/tex]
Hence, the price that yields the maximum profit is $1004
(f) The maximum profit
In (e), we have: [tex]\mathbf{p = 1004}[/tex]
Substitute 1004 for p in [tex]\mathbf{P =-10p^2 + 20080p - 172000}[/tex]
[tex]\mathbf{P =-10(1004)^2 + 20080(1004) - 172000}[/tex]
[tex]\mathbf{P =9908160}[/tex]
Hence, the maximum profit is $9908160
Read more about revenue, expenses and profit at:
https://brainly.com/question/23103804