Respuesta :
Congruent triangles have equal corresponding sides and angles.
- The measure of the side lengths are: [tex]\mathbf{DF = 16m}[/tex], [tex]\mathbf{JH = 14m}[/tex] and [tex]\mathbf{GJ = 19m}[/tex]
- The measure of the angles are: [tex]\mathbf{\angle G = 34^o}[/tex], [tex]\mathbf{\angle J = 41^o}[/tex] and [tex]\mathbf{\angle F = 105^o}[/tex]
The given parameters are:
[tex]\mathbf{\triangle D EF \cong \triangle GJH}[/tex]
[tex]\mathbf{EF = 14m}[/tex]
[tex]\mathbf{D E = 19m}[/tex]
[tex]\mathbf{GH = 16m}[/tex]
[tex]\mathbf{\angle D = 34^o}[/tex]
[tex]\mathbf{\angle H = 105^o}[/tex]
[tex]\mathbf{\triangle D EF \cong \triangle GJH}[/tex] means that triangles DEF and GHJ are congruent triangles.
So, we have:
[tex]\mathbf{DF = GH}[/tex]
This gives
[tex]\mathbf{DF = 16m}[/tex]
Also, we have:
[tex]\mathbf{JH = EF}[/tex]
This gives
[tex]\mathbf{JH = 14m}[/tex]
Also, we have:
[tex]\mathbf{GJ = DE}[/tex]
This gives
[tex]\mathbf{GJ = 19m}[/tex]
The following angles are also congruent
[tex]\mathbf{\angle F = \angle H}[/tex]
This gives
[tex]\mathbf{\angle F = 105^o}[/tex]
Also, we have:
[tex]\mathbf{\angle G = \angle D}[/tex]
This gives
[tex]\mathbf{\angle G = 34^o}[/tex]
The measure of angle J is then calculated using
[tex]\mathbf{\angle J + \angle H + \angle G = 180^o}[/tex]
This gives
[tex]\mathbf{\angle J + 105 + 34= 180^o}[/tex]
[tex]\mathbf{\angle J + 139= 180^o}[/tex]
Subtract 139 from both sides
[tex]\mathbf{\angle J = 41^o}[/tex]
Read more about congruent triangles at:
https://brainly.com/question/4364353