Respuesta :

Congruent triangles have equal corresponding sides and angles.

  • The measure of the side lengths are: [tex]\mathbf{DF = 16m}[/tex], [tex]\mathbf{JH = 14m}[/tex] and [tex]\mathbf{GJ = 19m}[/tex]
  • The measure of the angles are: [tex]\mathbf{\angle G = 34^o}[/tex], [tex]\mathbf{\angle J = 41^o}[/tex] and [tex]\mathbf{\angle F = 105^o}[/tex]

The given parameters are:

[tex]\mathbf{\triangle D EF \cong \triangle GJH}[/tex]

[tex]\mathbf{EF = 14m}[/tex]

[tex]\mathbf{D E = 19m}[/tex]

[tex]\mathbf{GH = 16m}[/tex]

[tex]\mathbf{\angle D = 34^o}[/tex]

[tex]\mathbf{\angle H = 105^o}[/tex]

[tex]\mathbf{\triangle D EF \cong \triangle GJH}[/tex] means that triangles DEF and GHJ are congruent triangles.

So, we have:

[tex]\mathbf{DF = GH}[/tex]

This gives

[tex]\mathbf{DF = 16m}[/tex]

Also, we have:

[tex]\mathbf{JH = EF}[/tex]

This gives

[tex]\mathbf{JH = 14m}[/tex]

Also, we have:

[tex]\mathbf{GJ = DE}[/tex]

This gives

[tex]\mathbf{GJ = 19m}[/tex]

The following angles are also congruent

[tex]\mathbf{\angle F = \angle H}[/tex]

This gives

[tex]\mathbf{\angle F = 105^o}[/tex]

Also, we have:

[tex]\mathbf{\angle G = \angle D}[/tex]

This gives

[tex]\mathbf{\angle G = 34^o}[/tex]

The measure of angle J is then calculated using

[tex]\mathbf{\angle J + \angle H + \angle G = 180^o}[/tex]

This gives

[tex]\mathbf{\angle J + 105 + 34= 180^o}[/tex]

[tex]\mathbf{\angle J + 139= 180^o}[/tex]

Subtract 139 from both sides

[tex]\mathbf{\angle J = 41^o}[/tex]

Read more about congruent triangles at:

https://brainly.com/question/4364353

Ver imagen MrRoyal