Similar figures are two or more given figures that have some common properties. The answers to the questions are;
14. m<WYZ = [tex]157^{o}[/tex]
15. m<ACB = [tex]87^{o}[/tex]
Two or more figures are said to be similar if they have some common properties. Note that similar figures may not be congruent.
Thus, the solutions to the questions can be determined as follows:
14. Comparing WYZ and VXYZ, we can deduce that:
<WYZ + <YVX = [tex]180^{o}[/tex] (sum of angles on a straight line))
So that;
(16x - 3) + (3x - 7) = [tex]180^{o}[/tex]
19x - 10 = [tex]180^{o}[/tex]
19x = [tex]190^{o}[/tex]
x = [tex]\frac{190}{19}[/tex]
= [tex]10^{o}[/tex]
Then,
m<WYZ = (16x - 3) = (16(10) -3)
= [tex]157^{o}[/tex]
The measure of angle WYZ is [tex]157^{o}[/tex].
15. (11x - 2) = (6x + 13) (similarity property)
11x - 6x = 13 + 2
5x = 15
x = 3
So that;
m<ABC = (6x + 13) = (6(3) + 13)
= [tex]31^{o}[/tex]
m<ABC = [tex]31^{o}[/tex]
But,
m<BAC + m<ABC + m<ACB = [tex]180^{o}[/tex] (sum of angles in a triangle)
[tex]62^{o}[/tex] + [tex]31^{o}[/tex] + m<ACB = [tex]180^{o}[/tex]
m<ACB = [tex]180^{o}[/tex] - 93
= [tex]87^{o}[/tex]
m<ACB = [tex]87^{o}[/tex]
The measure of angle ACB is [tex]87^{o}[/tex].
Visit: https://brainly.com/question/18558845