Rational expressions are expressions that can be represented as a quotient
The equivalent rational expression of [tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8}}[/tex] is [tex]\mathbf{\frac{5c^2 -6c-27}{c - 8}}[/tex]
The expression is given as:
[tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8}}[/tex]
Expand the numerator as follows
[tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8} = \frac{(5c \times c -5c \times 3 + 9\times c -9 \times 3)}{c - 8}}[/tex]
Multiply the factors on the numerator
[tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8} = \frac{(5c^2 -15c+ 9c -27)}{c - 8}}[/tex]
Collect and evaluate like terms
[tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8} = \frac{(5c^2 -6c-27)}{c - 8}}[/tex]
Remove the brackets
[tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8} = \frac{5c^2 -6c-27}{c - 8}}[/tex]
This means that:
[tex]\mathbf{\frac{5c^2 -6c-27}{c - 8}}[/tex] and the given expression [tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8}}[/tex] are equivalent
Hence, the equivalent rational expression of [tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8}}[/tex] is [tex]\mathbf{\frac{5c^2 -6c-27}{c - 8}}[/tex]
Read more about rational expressions at:
https://brainly.com/question/25292194