Respuesta :

Rational expressions are expressions that can be represented as a quotient

The equivalent rational expression of [tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8}}[/tex] is [tex]\mathbf{\frac{5c^2 -6c-27}{c - 8}}[/tex]

The expression is given as:

[tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8}}[/tex]

Expand the numerator as follows

[tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8} = \frac{(5c \times c -5c \times 3 + 9\times c -9 \times 3)}{c - 8}}[/tex]

Multiply the factors on the numerator

[tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8} = \frac{(5c^2 -15c+ 9c -27)}{c - 8}}[/tex]

Collect and evaluate like terms

[tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8} = \frac{(5c^2 -6c-27)}{c - 8}}[/tex]

Remove the brackets

[tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8} = \frac{5c^2 -6c-27}{c - 8}}[/tex]

This means that:

[tex]\mathbf{\frac{5c^2 -6c-27}{c - 8}}[/tex] and the given expression [tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8}}[/tex] are equivalent

Hence, the equivalent rational expression of [tex]\mathbf{\frac{(5c + 9)(c - 3)}{c - 8}}[/tex] is [tex]\mathbf{\frac{5c^2 -6c-27}{c - 8}}[/tex]

Read more about rational expressions at:

https://brainly.com/question/25292194

ACCESS MORE
EDU ACCESS