Answer:
[tex]x = \frac{-8 +\sqrt{190} }{2}[/tex] or x = 5.7840
Step-by-step explanation:
All the angles of a triangle add up to 180°, so we can solve this using the following equation:
180 = (x^2 + 34) + (6x + 4) + (10x + 10)
180 = x^2 + 34 + 6x + 4 + 10x + 10
Now, let's combine like terms:
180 = x^2 + (6x + 10x) + (34 + 4 + 10)
180 = x^2 + 16x + 54
Subtract 180 from both sides:
0 = x^2 + 16x - 126
And solve using the quadratic formula:
[tex]x = \frac{-b +\sqrt{b^{2}-4ac } }{2a}\\x = \frac{-16 +\sqrt{16^{2}-4(1)(-126) } }{2(1)}\\x = \frac{-16 +\sqrt{256+504 } }{2}\\x = \frac{-16 +\sqrt{760} }{2}\\x = \frac{-16 +2\sqrt{190} }{2}\\\\x = \frac{-8 +\sqrt{190} }{2}\\[/tex]
And we can approximate this as a decimal, if needed:
x = 5.7840