Please HELP ME!!!

[tex]x=1+i[/tex] is a solution to which of the following equations?

a: [tex]x^{2}+1=0[/tex]
b:[tex]x^{2} -2x+2=0[/tex]
c: [tex]x^{2} -2x+1=0[/tex]
d:[tex]x^{2} -1=0[/tex]

If you could please share you're thought process and work with me as well, so I can better understand how you found the answer. Thanks a bunch!

Respuesta :

Answer:

  • b. x² - 2x + 2 = 0

Step-by-step explanation:

Solve each to confirm answer

a.

  • x² + 1 = 0
  • x² = - 1
  • x = √ -1
  • x = i
  • FALSE

b.

  • x² - 2x + 2 = 0
  • (x - 1)² + 1 = 0
  • (x - 1)² = - 1
  • x - 1 = √-1
  • x - 1 = i
  • x = 1 + i
  • TRUE

c.

  • x² - 2x + 1 = 0
  • (x - 1)² = 0
  • x - 1 = 0
  • x = 1
  • FALSE

d.

  • x² - 1 = 0
  • x² = 1
  • x = √1
  • x = ± 1
  • FALSE

Answer:

Option B

Step-by-step explanation:

[tex]\\ \sf\longmapsto x^2-2x+2=0[/tex]

[tex]\\ \sf\longmapsto x=\dfrac{-(-2)\pm\sqrt{(-2)^2-4(1)(2)}}{2(1)}[/tex]

[tex]\\ \sf\longmapsto x=\dfrac{2\pm\sqrt{4-8}}{2}[/tex]

[tex]\\ \sf\longmapsto x=\dfrac{2\pm\sqrt{-4}}{2}[/tex]

[tex]\\ \sf\longmapsto x=\dfrac{2\pm 2i}{2}[/tex]

[tex]\\ \sf\longmapsto x=1\pm i[/tex]

Verified

RELAXING NOICE
Relax