Respuesta :
Answer:
- b. x² - 2x + 2 = 0
Step-by-step explanation:
Solve each to confirm answer
a.
- x² + 1 = 0
- x² = - 1
- x = √ -1
- x = i
- FALSE
b.
- x² - 2x + 2 = 0
- (x - 1)² + 1 = 0
- (x - 1)² = - 1
- x - 1 = √-1
- x - 1 = i
- x = 1 + i
- TRUE
c.
- x² - 2x + 1 = 0
- (x - 1)² = 0
- x - 1 = 0
- x = 1
- FALSE
d.
- x² - 1 = 0
- x² = 1
- x = √1
- x = ± 1
- FALSE
Answer:
Option B
Step-by-step explanation:
[tex]\\ \sf\longmapsto x^2-2x+2=0[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{-(-2)\pm\sqrt{(-2)^2-4(1)(2)}}{2(1)}[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{2\pm\sqrt{4-8}}{2}[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{2\pm\sqrt{-4}}{2}[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{2\pm 2i}{2}[/tex]
[tex]\\ \sf\longmapsto x=1\pm i[/tex]
Verified
