This question involves the concepts of the law of conservation of energy and specific heat capacity.
This collector can deliver "7.96 x 10⁻⁴ m³/min" of water at an output temperature of 60°C.
According to the law of conservation of energy:
Solar Energy = Energy Required to raise the temperature of the water
Solar Power = Energy Required to raise the temperature of the water
[tex]IA=\frac{mC\Delta T}{t}\\\\\frac{m}{t}=\frac{IA}{C\Delta}[/tex]
where,
[tex]\frac{m}{t}[/tex] = mass flow rate = ?
I = solar radiation = 660 W/m²
A = Area = 3.8 m²
ΔT = change in temperature = 60°C - 15°C = 45°C
C = specific heat capacity = 4200 J/kg.°C
Therefore,
[tex]\frac{m}{t}=\frac{(660\ W/m^2)(3.8\ m^2)}{(4200\ J/kg.^oC)(45^oC)}\\\\\frac{m}{t}=(0.0133\ kg/s)(\frac{60\ s}{1\ min})\\\\\frac{m}{t}=0.796\ kg/min[/tex]
Now, the volume flow rate will be:
[tex]\frac{V}{t}=\frac{(\frac{m}{t})}{(density\ of\ water)}=\frac{(0.796\ kg/min)}{(1000\ kg/m^3)}\\\\\frac{V}{t}=7.96\ x\ 10^{-4}\ m^3/min[/tex]
Learn more about the law of conservation of energy here:
brainly.com/question/20971995?referrer=searchResults
The attached picture explains the law of conservation of energy.