Respuesta :
Hi there!
A.
We can calculate the gravitational field strength using the following equation:
[tex]g = \frac{Gm_p}{r^2}[/tex]
G = Gravitational Constant
mp = mass of planet (kg)
r = radius (m)
Plug in the given values:
[tex]g = \frac{(6.67*10^{-11})*(5.68*10^{24})}{(6.03*10^7)^2} = \boxed{0.104 N/kg}[/tex]
B.
The force can be calculated using:
[tex]F_g = \frac{Gm_1m_2}{r^2}[/tex]
Plug in the values:
[tex]F_g = \frac{(6.67*10^{-11})(5.68*10^{24})(50)}{(6.04*10^7)^2} = \boxed{5.209N}[/tex]
Answer:
[tex]\boxed {\boxed {\sf g=0.104 \ N/kg \ and \ F_g= 5.2 \ N }}[/tex]
Explanation:
A. Gravitational Field Strength
The gravitational field strength can be calculated using the following formula:
[tex]g= \frac{Gm}{r^2}[/tex]
G, or the universal gravitational constant, is 6.67 × 10⁻¹¹ N*m²/kg². The mass of Saturn is 5.68 × 10²⁴ kilograms. The radius of Saturn is 6.03×10⁷ meters.
Substitute these values into the formula.
[tex]g= \frac{ (6.67 \times 10^{-11} \ N*m^2/kg^2) (5.68 \times 10^{24} \ kg)}{(6.03 \times 10^{7} \ m )^2}[/tex]
Multiply the numerator and square the denominator.
[tex]g= \frac{ 3.78856 \times 10^{14} \ N *m^2/kg }{3.63609 \times 10^{15} \ m^2}[/tex]
Divide.
[tex]g= 0.1041932405 \ N/kg[/tex]
The original measurements of mass and radius have 3 significant figures, so our answer must have the same. For the number we found, that is the thousandth place. The 1 in the ten-thousandth place tells us to leave the 4 in the thousandth place.
[tex]\boxed {g \approx 0.104 \ N/kg}[/tex]
B. Force of Gravity
The force of gravity is calculated using the following formula:
[tex]F_g= mg[/tex]
The mass of the object is 50 kilograms. We just calculated the gravitational field strength, which is 0.104 Newtons per kilogram. Substitute these values into the formula.
[tex]F_g= (50 \ kg)(0.104 \ N/kg)[/tex]
Multiply. The units of kilograms cancel.
[tex]\boxed {F_g=5.20 \ N}[/tex]
