please help to find an explicit formula for calculating the sum Mn

The explicit formula for calculating the sum is
[tex]S_N=\frac{n(n-1)}{2} \cdot\frac{n(n+1)}{2}[/tex]
The sum of the nth term of a sequence is expressed as;
[tex]S_n=\frac{n}{2}(2a+(n-1)d)[/tex]
a is the first term
d is the common difference
n is the number of terms
For the sequence 0 + 1 + 2 + 3 +...
[tex]S_n=\frac{n}{2}(2(0)+(n-1)1)\\S_n= \frac{n}{2}(n-1)\\S_n= \frac{n(n-1)}{2}[/tex]
Similarly for the sequence:
1 + 2+ 3 + 4+...
[tex]S_n=\frac{n}{2}(2(1)+(n-1)1)\\S_n= \frac{n}{2}(2+n-1)\\S_n= \frac{n(n+1)}{2}[/tex]
Taking the product of the sum to get the explicit formula for calculating the sum
[tex]S_N=\frac{n(n-1)}{2} \cdot\frac{n(n+1)}{2}[/tex]
Learn more here: https://brainly.com/question/24547297