Respuesta :

The logarithmic property chosen here is:

[tex]log_{a}[/tex] m - [tex]log_{a}[/tex] n = [tex]log_{a}[/tex] [tex]\frac{m}{n}[/tex], and its validity is proven below:

The logarithmic properties are up to six, but one of it that is applicable here is:

[tex]log_{a}[/tex] m - [tex]log_{a}[/tex] n = [tex]log_{a}[/tex] [tex]\frac{m}{n}[/tex]

In the above expression, both the numerator and denominator have the same base number, but different powers. So in this case, dividing a number of power m by the same number but of power n would given an answer that is the same as the number to the power of the difference between m and n.

For example: Solve;

a. [tex]log_{10}[/tex] 6 - [tex]log_{10}[/tex] 3

b. [tex]log_{10}[/tex] 8 - [tex]log_{10}[/tex] 5

c. [tex]log_{b}[/tex] 6 - [tex]log_{b}[/tex] 2

Solutions:

a. [tex]log_{10}[/tex] 6 - [tex]log_{10}[/tex] 3 = [tex]log_{10}[/tex] [tex]\frac{6}{2}[/tex]

        = [tex]log_{10}[/tex] 2

        = 0.3010

b. [tex]log_{10}[/tex] 8 - [tex]log_{10}[/tex] 5 = [tex]log_{10}[/tex] [tex]\frac{8}{5}[/tex]

      = [tex]log_{10}[/tex] 1.6

       = 0.2041

c. [tex]log_{b}[/tex] 6 - [tex]log_{b}[/tex] 2 = [tex]log_{b}[/tex] [tex]\frac{6}{2}[/tex]

        = [tex]log_{b}[/tex] 3

The stated examples defend the validity of the specific logarithmic property.

Visit: https://brainly.com/question/12049968

ACCESS MORE