Respuesta :
The logarithmic property chosen here is:
[tex]log_{a}[/tex] m - [tex]log_{a}[/tex] n = [tex]log_{a}[/tex] [tex]\frac{m}{n}[/tex], and its validity is proven below:
The logarithmic properties are up to six, but one of it that is applicable here is:
[tex]log_{a}[/tex] m - [tex]log_{a}[/tex] n = [tex]log_{a}[/tex] [tex]\frac{m}{n}[/tex]
In the above expression, both the numerator and denominator have the same base number, but different powers. So in this case, dividing a number of power m by the same number but of power n would given an answer that is the same as the number to the power of the difference between m and n.
For example: Solve;
a. [tex]log_{10}[/tex] 6 - [tex]log_{10}[/tex] 3
b. [tex]log_{10}[/tex] 8 - [tex]log_{10}[/tex] 5
c. [tex]log_{b}[/tex] 6 - [tex]log_{b}[/tex] 2
Solutions:
a. [tex]log_{10}[/tex] 6 - [tex]log_{10}[/tex] 3 = [tex]log_{10}[/tex] [tex]\frac{6}{2}[/tex]
= [tex]log_{10}[/tex] 2
= 0.3010
b. [tex]log_{10}[/tex] 8 - [tex]log_{10}[/tex] 5 = [tex]log_{10}[/tex] [tex]\frac{8}{5}[/tex]
= [tex]log_{10}[/tex] 1.6
= 0.2041
c. [tex]log_{b}[/tex] 6 - [tex]log_{b}[/tex] 2 = [tex]log_{b}[/tex] [tex]\frac{6}{2}[/tex]
= [tex]log_{b}[/tex] 3
The stated examples defend the validity of the specific logarithmic property.
Visit: https://brainly.com/question/12049968