The number of permutations without consecutive vowels at either end will be [tex]4560[/tex]
Let [tex]X = \{A, B, C, D, E, F, G\}[/tex]
Let [tex]Perm(X)=\{\text{All possible permutations of the elements of X}\}[/tex]
Let [tex]V = \{A, E\}[/tex]
Let [tex]Perm(\overline{V})= \{\text{All possible permutations of the consonants in X}\}[/tex]
Permutations with consecutive vowels at either end will have one of the following forms
[tex]AE\overline{v} \text{ or } EA\overline{v} \text{ or } \overline{v}AE \text{ or } \overline{v}EA\\\text{for } \overline{v} \in Perm(\overline{V})[/tex]
In all, we will have
[tex]4\times |Perm(\overline{V})|=4\times 5![/tex] permutations
So, the number of permutations without consecutive vowels at either end will be
[tex]|Perm(X)|-4\times|Perm(\overline{V})|=7!-4\times 5!=4560[/tex]
Another solved problem on permutations can be found here: https://brainly.com/question/25642091