Respuesta :

Answer:

7x³(7x² - 9)

Step-by-step explanation:

Hope this helps!

Answer:

[tex]7x^3(7x^2-9 )[/tex]

Step-by-step explanation:

To factor, you have to find the GCF of 49 and 63 and the GCF of [tex]x^{5}[/tex] and [tex]x^3[/tex]

Factor 49: 1,7, and 49

Factor 63: 1, 3, 7, 9, 21, 63

Factor [tex]x^{5}[/tex]: [tex]x*x*x*x*x[/tex]

Factor [tex]x^3[/tex]: [tex]x*x*x[/tex]

So the GCF of 49 and 63 is 7

The GCF of [tex]x^{5}[/tex] and [tex]x^{3}[/tex] is [tex]x^3[/tex]

We multiply 7 by [tex]x^{3}[/tex] to get [tex]7x^3[/tex]

So now we start to factor out the GCF of [tex]49x^5-63x^3[/tex]

[tex]7x^3(\frac{49x^5}{7x^3}+ \frac{63x^3}{7x^3} )[/tex]

[tex]\frac{49}{7} =7\\x^5-x^3=x^2[/tex]

[tex]\frac{63}{7} =9\\x^3-x^3=x^0[/tex] because [tex]x^{0}[/tex] can't be written as an exponent we don't write [tex]9x^0[/tex]

When we factor we get [tex]7x^3(7x^2-9 )[/tex]

ACCESS MORE