Respuesta :

Answer:

x = 36°, 2x° = 72°, 3x° = 108°, and 4x° = 144°

Step-by-step explanation:

Given the quadrilateral in which the sum of its four angles is 360°.

We can establish the following formula to find the value of x, and determine the measures of each angle:

x° + 2x° + 3x° + 4x° = 360°

Combine like terms:

10x° = 360°

Divide both sides by 10 to solve for x:

[tex]\mathsf{\frac{10x^{\circ}}{10}\:=\: \frac{360^{\circ}}{10}}[/tex]

x = 36°

Substitute the value of x into each unknown angle measures:

x = 36°

2x° = 2(36)° = 72°

3x° = 3(36)° = 108°

4x° = 4(36)° = 144°

Verify whether the sum of the previously unknown angle measures equal 360°:

x° + 2x° + 3x° + 4x° = 360°

36° + 72° + 108° + 144° = 360°

360° = 360° (True statement).

Therefore, the following are the angle measures of the given quadrilateral: x = 36°, 2x° = 72°, 3x° = 108°, and 4x° = 144°

ACCESS MORE