Respuesta :
Answer:
Answer:
The solutions to x2 + 4x + 1 = 0 are x = -2 + √(3) or x = -2 - √(3).
Step-by-step explanation:
^_^ Your Welcome!
Step-by-step explanation:
Answer:
[tex]x =2± \sqrt{5} [/tex]
Step-by-step explanation:
[tex] {x}^{2} - 4x - 1 = 0 \\ [/tex]
1. Use the quadratic formula
[tex]x = \frac{ - b± \sqrt{ {b}^{2} - 4ac} }{2a} \\ [/tex]
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
[tex] {x}^{2} −4−1=0 \\ a = 1 \\ b = - 4 \\ c = - 1 \\ x = \frac{ - ( - 4)± \sqrt{( - 4)^{2} } - 4⋅1( - 1)}{2.1} \\[/tex]
2. Simplify
1. Evaluate the exponent
[tex] x = \frac{4±(−4)^{2} −4⋅1(−1)}{2.1} \\ x = \frac{4± \sqrt{16 - 4⋅1( - 1)} }{2⋅1} [/tex]
2. Multiply the numbers
[tex]x = \frac{4± \sqrt{16 - 4⋅1( - 1)} }{2⋅1} \\ x = \frac{4± \sqrt{16 + 4} }{2⋅1} [/tex]
3. Add the numbers
[tex]x = \frac{4± \sqrt{16 + 4} }{2⋅1} \\ x = \frac{4± \sqrt{20} }{2⋅1} [/tex]
4. Factorisation
[tex] x = \frac{4± \sqrt{20} }{2⋅1} \\ x = \frac{4± \sqrt{2⋅10} }{2⋅1} [/tex]
5. Factorisation
[tex]x = \frac{4± \sqrt{20} }{2⋅1} \\ x = \frac{4± \sqrt{2⋅2⋅5} }{2⋅1} [/tex]
6. Evaluate the square root
[tex]x = \frac{4± \sqrt{2⋅2⋅5} }{2⋅1} \\ x = \frac{4± \sqrt{2}⋅ \sqrt{2} ⋅ \sqrt{5} }{2⋅1} [/tex]
7. Evaluate the square root
[tex] x = \frac{4± \sqrt{2}⋅ \sqrt{2} ⋅ \sqrt{5} }{2⋅1} \\ x = \frac{4± \sqrt[2]{5}}{2⋅1} [/tex]
8. Multiply the numbers
[tex]x = \frac{4± \sqrt[2]{5}}{2⋅1} \\ x = \frac{4± \sqrt[2]{5} }{2⋅1} [/tex]
3. Separate the equations
To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.
[tex]x = \frac{4 + \sqrt[2]{5} }{2⋅1} \\ x = \frac{4 - \sqrt[2]{5}}{2⋅1} [/tex]
4. Solve
Rearrange and isolate the variable to find each solution
[tex]x = 2 + \sqrt{5} \\ x = 2 - \sqrt{5} [/tex]
Solution
[tex]x = 2± \sqrt{5} [/tex]