Consider the equation p^2-5p-6-x(p-6)^2=0, where p is a real constant. If p is not equal to 6, then x=

A. (p-2)/(p-6)

B. (p-1)/(p-6)

C. (p+1)/(p-6)

D. (p+2)/(p-6)

Respuesta :

Provided that p is a real value not equal to 6, the value of x is (c) [tex]\mathbf{x = \frac{p+1}{p - 6}}[/tex]

The equation is given as:

[tex]\mathbf{p^2-5p-6-x(p-6)^2=0}[/tex]

Expand

[tex]\mathbf{p^2-6p + p-6-x(p-6)^2=0}[/tex]

Factorize

[tex]\mathbf{p(p-6) + 1(p-6)-x(p-6)^2=0}[/tex]

Factor out p -6

[tex]\mathbf{(p+1)(p-6)-x(p-6)^2=0}[/tex]

Divide through by p - 6

[tex]\mathbf{(p+1)-x(p-6)=0}[/tex]

Rewrite as:

[tex]\mathbf{x(p-6) = (p+1)}[/tex]

Make x the subject

[tex]\mathbf{x = \frac{p+1}{p - 6}}[/tex]

Hence, the value of x is (c) [tex]\mathbf{x = \frac{p+1}{p - 6}}[/tex]

Read more about equations and real constants at:

https://brainly.com/question/17118747

ACCESS MORE