Respuesta :

In spherical coordinates, the region R is the set

[tex]R = \left\{ (\rho, \theta, \varphi) \, : \, 0 \le \rho \le 3, \, 0 \le \theta \le 2\pi, \, \dfrac\pi6 \le \varphi \le \pi\right\}[/tex]

Then the volume of R is

[tex]\displaystyle \iiint_R dV = \int_0^3 \int_0^{2\pi} \int_{\frac\pi6}^\pi \rho^2 \sin(\varphi) \, d\varphi \, d\theta \, d\rho[/tex]

The integrand is free of [tex]\theta[/tex], so we can immediately compute that integral and pull out a factor of 2π :

[tex]\displaystyle \iiint_R dV = 2\pi \int_0^3 \int_{\frac\pi6}^\pi \rho^2 \sin(\varphi) \, d\varphi \, d\rho[/tex]

and the remaining double can be factorized as

[tex]\displaystyle \iiint_R dV = 2\pi \left(\int_0^3 \rho^2 \, d\rho\right) \left(\int_{\frac\pi6}^\pi \sin(\varphi) \, d\varphi\right)[/tex]

The single integrals are trivial:

[tex]\displaystyle \int_0^3 \rho^2 \, d\rho = \frac13 (3^3 - 0^3) = 3^2 = 9[/tex]

[tex]\displaystyle \int_{\frac\pi6}^\pi \sin(\varphi) \, d\varphi = -\cos(\pi) - \left(-\cos\left(\frac\pi6\right)\right) = 1 + \frac{\sqrt3}2[/tex]

So, the volume of R is

[tex]\displaystyle \iiint_R dV = 2\pi \cdot 9 \cdot \left(1 + \frac{\sqrt3}2\right) = \boxed{9(2+\sqrt3)\pi}[/tex]

ACCESS MORE