If f Superscript negative 1 Baseline (x) = negative one-fifth x, what is f Superscript negative 1 Baseline (x) = one-fifth x? mc002-3. Jpg mc002-4. Jpg mc002-5. Jpg mc002-6. Jpg.

Respuesta :

Answer:

Option C.

f^-1(x)=1/5x

Explanation:

[tex]f^{-1}(x) = -\frac 15x[/tex] is reflected across the x-axis to form [tex]f^{-1}(x) = \frac 15x[/tex].

The function is given as:

[tex]f^{-1}(x) = -\frac 15x[/tex]

[tex]f^{-1}(x) = \frac 15x[/tex]

By comparison, we can see that:

  • Both functions are inverse functions
  • Both inverse functions hold different values

Rewrite the second function as:

[tex]g^{-1}(x) = \frac 15x[/tex]

So, the relationship between both inverse functions is:

[tex]f^{-1}(x) = -g^{-1}(x)[/tex]

The above relationship means that, f'(x) is reflected across the x-axis to form g'(x)

Hence, [tex]f^{-1}(x) = -\frac 15x[/tex] is reflected across the x-axis to form [tex]f^{-1}(x) = \frac 15x[/tex].

Read more about inverse functions at:

https://brainly.com/question/14595259