Respuesta :
[tex]f^{-1}(x) = -\frac 15x[/tex] is reflected across the x-axis to form [tex]f^{-1}(x) = \frac 15x[/tex].
The function is given as:
[tex]f^{-1}(x) = -\frac 15x[/tex]
[tex]f^{-1}(x) = \frac 15x[/tex]
By comparison, we can see that:
- Both functions are inverse functions
- Both inverse functions hold different values
Rewrite the second function as:
[tex]g^{-1}(x) = \frac 15x[/tex]
So, the relationship between both inverse functions is:
[tex]f^{-1}(x) = -g^{-1}(x)[/tex]
The above relationship means that, f'(x) is reflected across the x-axis to form g'(x)
Hence, [tex]f^{-1}(x) = -\frac 15x[/tex] is reflected across the x-axis to form [tex]f^{-1}(x) = \frac 15x[/tex].
Read more about inverse functions at:
https://brainly.com/question/14595259