Respuesta :

The acceptable first step in simplifying the expression [tex]\mathbf{\frac{tan\ x}{1 + sec\ x}}[/tex] is (a) [tex]\mathbf{\frac{tan\ x(1 - sec\ x)}{(1 + sec\ x)(1 - sec\ x)}}[/tex]

The expression is given as:

[tex]\mathbf{\frac{tan\ x}{1 + sec\ x}}[/tex]

To change the form of the expression, we simply perform several arithmetic operations on it.

Start by multiplying the expression by 1/1

[tex]\mathbf{\frac{tan\ x}{1 + sec\ x} = \frac{tan\ x}{1 + sec\ x} \times \frac 11}[/tex]

Express 1 /1 as (1 - sec x)/(1 - sec x)

[tex]\mathbf{\frac{tan\ x}{1 + sec\ x} = \frac{tan\ x}{1 + sec\ x} \times \frac{1 - sec\ x}{1 - sec\ x}}[/tex]

Rewrite the above expression as follows:

[tex]\mathbf{\frac{tan\ x}{1 + sec\ x} = \frac{tan\ x(1 - sec\ x)}{(1 + sec\ x)(1 - sec\ x)}}[/tex]

Hence, the acceptable first step is (a)

Read more about trigonometry ratios at:

https://brainly.com/question/24888715

Answer:

A

Step-by-step explanation:

The possible first step is A