The surface area of the balloon is [tex]A=4\pi r^2[/tex].
Differentiate both sides with respect to an arbitrary variable representing time:
[tex]\dfrac{\mathrm dA}{\mathrm dt}=8\pi r\dfrac{\mathrm dr}{\mathrm dt}[/tex]
Meanwhile, the volume of the balloon is [tex]V=\dfrac43\pi r^3[/tex].
Differentiating with respect to [tex]t[/tex] yields
[tex]\dfrac{\mathrm dV}{\mathrm dt}=4\pi r^2\dfrac{\mathrm dr}{\mathrm dt}[/tex]
You're told that, at the point when the radius [tex]r=15[/tex], the volume of the balloon increases at a rate of [tex]20\text{ ft}^3/\text{min}[/tex], which means [tex]\dfrac{\mathrm dV}{\mathrm dt}=20[/tex]. Use this to solve for the rate of change of the radius, [tex]\dfrac{\mathrm dr}{\mathrm dt}[/tex].
[tex]20=4\pi \times15^2\dfrac{\mathrm dr}{\mathrm dt}\implies\dfrac{\mathrm dr}{\mathrm dt}=\dfrac5{15^2\pi}[/tex]
Substitute this into the equation for the rate of change of the surface area and solve for [tex]\dfrac{\mathrm dA}{\mathrm dt}[/tex].
[tex]\dfrac{\mathrm dA}{\mathrm dt}=8\pi \times15\times\dfrac5{15^2\pi}=\dfrac{40}{15}=\dfrac83[/tex]