Respuesta :
Answer:
g, f, h
Step-by-step explanation:
By definition, the average rate of change of a function f over an interval [a,b] is given by
[tex]\dfrac{f(b)-f(a)}{b-a}[/tex]
So, in your case, we want to compute the quantity
[tex]\dfrac{f(3)-f(0)}{3}[/tex]
for all the three function
Average rate of change of f:
We will simply use the table to check the values for f(3) and f(0):
[tex]\dfrac{f(3)-f(0)}{3}=\dfrac{10-1}{3} = 3[/tex]
Average rate of change of g:
We will use the graph to to check the values for g(3) and g(0):
[tex]\dfrac{g(3)-g(0)}{3}=\dfrac{8-1}{3} = \dfrac{7}{3}[/tex]
Average rate of change of h:
We can plug the values in the equation to get h(3) and h(0):
h(3)=3^2+3-6=9+3-6=6,[tex]\quad h(0)=0^2+0-6=-6[/tex]
And so the average rate of change is
[tex]\dfrac{h(3)-h(0)}{3}=\dfrac{6-(-6)}{3} = 4[/tex]
Answer:
his answer is write i had it on a quiz and that was the right answer
Step-by-step explanation: