Respuesta :
The maximum volume of the box is the highest volume the box can have.
- The model of the function is: [tex]\mathbf{V(w) = (4 + w) \times w \times \frac{8 - w}{2}}[/tex]
- The roots of V(x) are: [tex]\mathbf{x = 0,4,6}[/tex].
- The maximum volume is: 67.60 cubic inches, and the width of the cut-out is 1.569 inch
(a) A model function V(w)
The dimension of the cardboard is given as:
[tex]\mathbf{l =12}[/tex]
[tex]\mathbf{w =8}[/tex]
Assume the cut-out is x.
So, we have:
[tex]\mathbf{l =12 - 2x}[/tex]
[tex]\mathbf{w =8 - 2x}[/tex]
[tex]\mathbf{h = x}[/tex]
Make x the subject in [tex]\mathbf{w =8 - 2x}[/tex]
[tex]\mathbf{x = \frac{8 - w}{2}}[/tex]
The volume of the box is calculated as:
[tex]\mathbf{V = lwh}[/tex]
Substitute expressions for l and h
[tex]\mathbf{V = (12 - 2x) \times w \times x}[/tex]
Substitute [tex]\mathbf{x = \frac{8 - w}{2}}[/tex]
[tex]\mathbf{V = (12 - 2\times (\frac{8 - w}{2})) \times w \times \frac{8 - w}{2}}[/tex]
[tex]\mathbf{V = (12 - (8 - w)) \times w \times \frac{8 - w}{2}}[/tex]
[tex]\mathbf{V = (12 - 8 + w) \times w \times \frac{8 - w}{2}}[/tex]
[tex]\mathbf{V = (4 + w) \times w \times \frac{8 - w}{2}}[/tex]
So, we have:
[tex]\mathbf{V(w) = (4 + w) \times w \times \frac{8 - w}{2}}[/tex]
Hence, the model of the function is: [tex]\mathbf{V(w) = (4 + w) \times w \times \frac{8 - w}{2}}[/tex]
(b) The graph of the function and the model function
In (a), we have:
[tex]\mathbf{V = (12 - 2x) \times w \times x}[/tex]
Substitute [tex]\mathbf{w =8 - 2x}[/tex]
[tex]\mathbf{V = (12 - 2x) \times (8 -2x) \times x}[/tex]
So, we have:
[tex]\mathbf{V(x) = (12 - 2x) \times (8 -2x) \times x}[/tex]
See attachment for the graphs of V(x) and V(w)
(c) The roots of V(x)
From the graph of V(x), the roots are:
[tex]\mathbf{x = 0,4,6}[/tex]
These values represent the possible cut-outs from the cardboard
(d) The maximum volume
From the graphs of V(x) and V(w), the maximum volume is:
[tex]\mathbf{Maximum = 67.60}[/tex]
And the width of the cut-out is:
[tex]\mathbf{Width= 1.569}[/tex]
Hence, the maximum volume is: 67.60 cubic inches, and the width of the cut-out is 1.569 inch
Read more about volumes at:
https://brainly.com/question/1885684