Respuesta :
We need range
[tex]\\ \sf\longmapsto f(x)=-0.7x^2-2.7x+4[/tex]
- See here x^2 will come greater than or equal to zero.
Least value of x^2 is 0
[tex]\\ \sf\longmapsto -0.7(0)+2.7(0)+4=4[/tex]
So
range
[tex]\\ \sf\longmapsto R_f=[4,\infty)[/tex]
Answer:
6.60
Step-by-step explanation:
Method I - Algebra
For quadratics of the form ax^2 + b + c the vertex is at
x = -b/2a
x = 2.7/(2 * -0.7)
x = 2.7 / (-1.4)
x = -1.9285714286
-----------------------------
Method II - Calculus
Take the first derivative and set to zero
2(-0.7)x - 2.7 = 0
-1.4x - 2.7 = 0
-1.4x = 2.7
x = 2.7/(-1.4)
x = -1.9285714286
-----------------------------
pluging x = -1.9285714286 into the function
f(-1.9285714286) = -0.7(-1.9285714286)^2 - 2.7(-1.9285714286) + 4
f(-1.9285714286) = 6.6035714286
Rounded
f(-1.9285714286) = 6.60
--------------------------------------