Combining the homogeneous and the particular solutions, and applying the initial conditions, the solution to the given IVP is:
[tex]x(t) = -\cos{(2t)} + \frac{1}{2}\sin{(2t)}[/tex]
The IVP is given by:
[tex]x^{\prime\prime} + 4x = -2\sin{(2t)} + 8\cos{(2t)}[/tex]
First, we find the homogeneous solution, which depends on the roots of the characteristic equation, given by:
[tex]r^2 + 4 = 0[/tex]
[tex]r^2 = -4[/tex]
[tex]r = \pm \sqrt{-4}[/tex]
[tex]r = \pm 2i[/tex]
Thus:
[tex]x_h(t) = a\cos{(2t)} + b\sin{(2t)}[/tex]
Then, according to the source(left-side of the equality), the particular solution has the following format:
[tex]x_p(t) = A\cos{(2t)} + B\sin{(2t)}[/tex]
Applying the derivatives:
[tex]x_p^{\prime}(t) = -2A\sin{(2t)} + 2B\cos{(2t)}[/tex]
[tex]x_p^{\prime\prime}(t) = -4A\cos{(2t)} - 4B\sin{(2t)}[/tex]
Replacing into the IVP:
[tex]x^{\prime\prime} + 4x = -2\sin{(2t)} + 8\cos{(2t)}[/tex]
[tex]-4A\cos{(2t)} - 4B\sin{(2t)} + 4A\cos{(2t)} + 4B\sin{(2t)} = -2\sin{(2t)} + 8\cos{(2t)}[/tex]
[tex]0A\cos{(2t)} + 0B\sin{(2t)} = -2\sin{(2t)} + 8\cos{(2t)}[/tex]
Thus, the particular solution is [tex]x_p(t) = 0[/tex].
The complete solution is:
[tex]x(t) = x_h(t) + x_p(t)[/tex]
[tex]x(t) = x_h(t)[/tex]
[tex]x(t) = A\cos{(2t)} + B\sin{(2t)}[/tex]
Applying the initial conditions:
[tex]x(0) = -1 \rightarrow A + 0B = -1 \rightarrow A = -1[/tex]
[tex]x^{\prime}(0) = 1 \rightarrow 2B = 1 \rightarrow B = \frac{1}{2}[/tex]
Thus, the solution is:
[tex]x(t) = -\cos{(2t)} + \frac{1}{2}\sin{(2t)}[/tex]
A similar problem is given at https://brainly.com/question/13143214