Respuesta :

The equivalent expression of [tex] \sqrt[3]{216x^3y^6z^{12}} [/tex] is [tex]6xy^2z^4[/tex]

Answer:

Option 1

[tex]\sqrt[3]{216x^3y^6z^{12}}=6xy^2z^4[/tex]

Step-by-step explanation:

Given : Expression [tex]\sqrt[3]{216x^3y^6z^{12}}[/tex]

To find : Which expression is equivalent to given expression?

Solution :

The given expression is

[tex]\sqrt[3]{216x^3y^6z^{12}}[/tex]

We can write it as,

[tex]=(216x^3y^6z^{12})^{\frac{1}{3}}[/tex]

Applying power rule, [tex](x^a)^b=x^{a\times b}[/tex]

[tex]=(216)^\frac{1}{3}(x^3)^\frac{1}{3}(y^6)^\frac{1}{3}(z^{12})^{\frac{1}{3}}[/tex]

[tex]=(6^3)^\frac{1}{3}(x^3)^\frac{1}{3}(y^6)^\frac{1}{3}(z^{12})^{\frac{1}{3}}[/tex]

[tex]=6xy^2z^4[/tex]

Therefore, Option 1 is correct.

[tex]\sqrt[3]{216x^3y^6z^{12}}=6xy^2z^4[/tex]