Respuesta :

remember
[tex] \frac{x^m}{x^n}=x^{m-n} [/tex]
and
(ab)/c=(a/c)(b/c)
and
[tex] \sqrt[n]{x^m} =x^ \frac{m}{n} [/tex]
and
[tex](x^m)^n=x^{mn}[/tex]
and
x^-m=1/(x^m)


so
first convert 8 to 2³

[tex] \frac{ \sqrt[5]{2^3} \sqrt[2]{2^3} }{ \sqrt[3]{(2^3)^5} } [/tex]=
[tex] \frac{(2^ \frac{3}{5})(2^ \frac{3}{2}) }{2^ \frac{15}{3} } [/tex]=
we can simplify [tex] 2^ \frac{15}{3}  [/tex] to [tex] 2^5  [/tex]
[tex] \frac{(2^ \frac{3}{5})(2^ \frac{3}{2}) }{2^5} [/tex]=
[tex]( \frac{2^ \frac{3}{5}}{2^5} )( \frac{2^ \frac{3}{2}}{2^5} )[/tex]
(3/5)-5=3/5-25/5=-22/5
3/2-5=3/2-10/2=-7/2
[tex](2^ \frac{-22}{5})(2^ \frac{-7}{2}) [/tex]
-22/5+(-7/2)=
-44/10-35/10=
-79/10=-7 and 9/10
[tex] 2^{-7&\frac{9}{10}=\frac{1}{7 \sqrt[10]{2^9} } [/tex]

sorry for complex stuff