Respuesta :
The entropy indicates the amount of thermodynamic energy that is not
available for work.
a. The final temperature is 400 K
b. The final pressure is 2.25 bar
c. The amount entropy produced, Δs is approximately 0.063712 kJ/K
Reason:
The given parameters are;
Type of box = Insulated
Volumes into which the box is divided = Equal volumes
Type of piston = Frictionless, thermally conducting
Volume on each side of the piston = 1.0 m³
Temperature on each side of the piston, T₁ = T₂ = 400 K
Pressure on one side of the piston = 3.0 bar
Pressure on the other side of the piston = 1.5 bar
a. The final temperature of the air;
Given that the piston is frictionless and allowed move freely, and air is
contained on both sides of the piston, we have;
The system is equivalent to the piston being removed such that the gas
moves freely in the box.
Therefore, the high pressured side drops in temperature while the low
pressure side gains temperature, such that the change in temperature is
zero.
Which gives; T₁ = T₂ = [tex]T_f[/tex]
Therefore;
The final temperature, [tex]\mathbf{T_f}[/tex] = T₁ = T₂ = 400 K
b. The final pressure is given as follows;
We have;
[tex]\dfrac{P_{1}\times V_{1}}{T_{1}} = \dfrac{P_{f}\times (V_{1} -V) }{T_{f}}[/tex]
[tex]\dfrac{3\times 1}{400} = \dfrac{P_{f}\times (1+V) }{T_{f}}[/tex]
[tex]\dfrac{P_{2}\times V_{2}}{T_{2}} = \dfrac{P_{f}\times (V_{2} +V) }{T_{f}}[/tex]
[tex]\dfrac{1.5\times 1}{400} = \dfrac{P_{f}\times (1 -V) }{T_{f}}[/tex]
[tex]\dfrac{1 + V}{1 - V} = 2[/tex]
Which gives;
[tex]V = \dfrac{1}{3}[/tex]
[tex]T_f[/tex] = 400 K, gives;
[tex]\dfrac{1.5\times 1}{400} = \dfrac{P_{f}\times \left (1 -\dfrac{1}{3} \right) }{400} = \dfrac{\dfrac{2}{3} \cdot P_f}{400}[/tex]
[tex]1.5\times 1} =\dfrac{2}{3} \cdot P_f}[/tex]
[tex]P_f = \dfrac{3 \times 1.5\times 1 }{2} = 2.25[/tex]
The final pressure, [tex]\mathbf{P_f}[/tex] = 2.25 bar
c. The amount of entropy produced, in kJ/K
The change in entropy is given by the formula;
[tex]\Delta s = \Delta s_1 + \Delta s_1 = -R \cdot \dfrac{P_1 \cdot V_1}{R \cdot T_1} \cdot ln\dfrac{P_f}{P_1} + \left(-R \cdot \dfrac{P_2 \cdot V_2}{R \cdot T_2} \cdot ln\dfrac{P_f}{P_2} \right)[/tex]
[tex]\Delta s = -\dfrac{P_1 \cdot \dfrac{V}{2} }{ T_f} \cdot ln\dfrac{P_f}{P_1} + \left(-\dfrac{P_2 \cdot \dfrac{V}{2} }{ T_f} \cdot ln\dfrac{P_f}{P_2} \right)[/tex]
Which gives;
[tex]\Delta s = -\dfrac{3 \times \dfrac{2}{2} }{ 400} \cdot ln\dfrac{2.25}{3} + \left(-\dfrac{1.5 \cdot \dfrac{2}{2} }{ 400} \cdot ln\dfrac{2.25}{1.5} \right) \approx 6.371 \times 10^{-4}[/tex]
Δs = 6.371 × 10⁻⁴ bar·m³/K = 63.712 J/K = 0.063712 J/K
The entropy produced, Δs = 0.063712 kJ/K.
Learn more here:
https://brainly.com/question/15086541