Respuesta :
[tex]remember[/tex]
[tex]ln(x)=log_e(x)[/tex]
[tex]and[/tex]
[tex]log_x(a)-log_x(b)= log_x( \frac{a}{b} )[/tex]
[tex]and[/tex]
[tex]log_a(b)=c[/tex] means [tex]a^c=b[/tex]
[tex]and[/tex]
[tex]blog(a)=log(a^b)[/tex]
[tex] so[/tex]
[tex] ln(y+1)-ln(y)=1+3ln(x) [/tex]
[tex]ln( \frac{y+1}{y} )=1+ln(x^3)[/tex]
[tex]minus[/tex] [tex]ln(x^3)[/tex] [tex]from[/tex] [tex]both[/tex] [tex]sides[/tex]
[tex]ln( \frac{y+1}{y}-ln(x^3) )=1[/tex]
[tex]ln( \frac{y+1}{yx^3})=1[/tex]
[tex]log_e( \frac{y+1}{yx^3})=1[/tex]
[tex]translate[/tex]
[tex]e^1=\frac{y+1}{yx^3}[/tex]
[tex]e=\frac{y+1}{yx^3}[/tex]
[tex]times[/tex] [tex]both[/tex] [tex]sides[/tex] [tex]by[/tex] [tex]yx^3[/tex]
[tex]eyx^3=y+1[/tex]
[tex]minus[/tex] [tex]y[/tex] [tex]from[/tex] [tex]both[/tex] [tex]sides[/tex]
[tex]eyx^3-y=1[/tex]
[tex]y(ex^3-1)=1[/tex]
[tex]divide[/tex] [tex]both[/tex] [tex]sides[/tex] [tex]by[/tex] [tex](ex³-1)[/tex]
[tex]y= \frac{1}{ex^3-1} [/tex]
[tex]ln(x)=log_e(x)[/tex]
[tex]and[/tex]
[tex]log_x(a)-log_x(b)= log_x( \frac{a}{b} )[/tex]
[tex]and[/tex]
[tex]log_a(b)=c[/tex] means [tex]a^c=b[/tex]
[tex]and[/tex]
[tex]blog(a)=log(a^b)[/tex]
[tex] so[/tex]
[tex] ln(y+1)-ln(y)=1+3ln(x) [/tex]
[tex]ln( \frac{y+1}{y} )=1+ln(x^3)[/tex]
[tex]minus[/tex] [tex]ln(x^3)[/tex] [tex]from[/tex] [tex]both[/tex] [tex]sides[/tex]
[tex]ln( \frac{y+1}{y}-ln(x^3) )=1[/tex]
[tex]ln( \frac{y+1}{yx^3})=1[/tex]
[tex]log_e( \frac{y+1}{yx^3})=1[/tex]
[tex]translate[/tex]
[tex]e^1=\frac{y+1}{yx^3}[/tex]
[tex]e=\frac{y+1}{yx^3}[/tex]
[tex]times[/tex] [tex]both[/tex] [tex]sides[/tex] [tex]by[/tex] [tex]yx^3[/tex]
[tex]eyx^3=y+1[/tex]
[tex]minus[/tex] [tex]y[/tex] [tex]from[/tex] [tex]both[/tex] [tex]sides[/tex]
[tex]eyx^3-y=1[/tex]
[tex]y(ex^3-1)=1[/tex]
[tex]divide[/tex] [tex]both[/tex] [tex]sides[/tex] [tex]by[/tex] [tex](ex³-1)[/tex]
[tex]y= \frac{1}{ex^3-1} [/tex]
Applying logarithm properties, it is found that the correct expression is:
[tex]y = \frac{1}{ex^3 - 1}[/tex]
These following properties are applied:
[tex]\ln{a} + \ln{b} = \ln{(ab)}[/tex]
[tex]\ln{a} - \ln{b} = \ln{\left(\frac{a}{b}\right)}[/tex]
[tex]a\ln{x} = \ln{x^a}[/tex]
Also, since [tex]e^1 = e, 1 = \ln{e}[/tex]
The original expression is:
[tex]\ln{(y + 1)} - \ln{y} = 1 + 3\ln{x}[/tex]
Since [tex]1 = \ln{e}[/tex]
[tex]\ln{(y + 1)} - \ln{y} = \ln{e} + 3\ln{x}[/tex]
Applying the properties, we have that:
[tex]\ln{\left(\frac{y+1}{y}\right)} = \ln{e} + \ln{x^3}[/tex]
[tex]\ln{\left(\frac{y+1}{y}\right)} = \ln{ex^3}[/tex]
Removing the logarithms
[tex]\frac{y+1}{y} = ex^3[/tex]
[tex]y + 1 = yex^3[/tex]
[tex]yex^3 - y = 1[/tex]
[tex]y(ex^3 - 1) = 1[/tex]
[tex]y = \frac{1}{ex^3 - 1}[/tex]
A similar problem is given at https://brainly.com/question/14405084