Respuesta :
Bacteria multiplies at a rate of [tex] 10^{13} [/tex] per [tex]10^{2} [/tex] hours.
In extended form, we get:
Rate of 10000000000000 per 100 hours.
Then for 1 hour, we only divide 10000000000000 by 100.
Thus we get that the average growth of bacteria per hour is 100000000000, or when writing it in exponential terms, [tex] 10^{11} [/tex].
In extended form, we get:
Rate of 10000000000000 per 100 hours.
Then for 1 hour, we only divide 10000000000000 by 100.
Thus we get that the average growth of bacteria per hour is 100000000000, or when writing it in exponential terms, [tex] 10^{11} [/tex].
given
rate=10^13
time=10^2 hours
average per hour=rate/time
to make this less messy, use exponent rules
remember:
[tex] \frac{x^m}{x^n}=x^{m-n} [/tex] where x=x
so
[tex] \frac{x^13}{x^2}=10^{13-2}=10^{11} [/tex]
growth rate is [tex]10^{11} [/tex] per hour
rate=10^13
time=10^2 hours
average per hour=rate/time
to make this less messy, use exponent rules
remember:
[tex] \frac{x^m}{x^n}=x^{m-n} [/tex] where x=x
so
[tex] \frac{x^13}{x^2}=10^{13-2}=10^{11} [/tex]
growth rate is [tex]10^{11} [/tex] per hour