Answer:
[tex] \longmapsto \sqrt{7} - \sqrt{5} .[/tex]
Step-by-step explanation:
[tex]\sf{\:\dfrac{2}{\sqrt{7} + \sqrt{5}}}[/tex]
By rationalizing the denominator,
[tex]=\sf{\dfrac{2}{\sqrt{7} + \sqrt{5}}\times \dfrac{\sqrt{7} - \sqrt{5}}{\sqrt{7} - \sqrt{5}}}[/tex]
[tex]=\sf{\dfrac{2(\sqrt{7} - \sqrt{5})}{(\sqrt{7} + \sqrt{5})(\sqrt{7} - \sqrt{5})}}[/tex]
[tex]=\sf{\dfrac{2(\sqrt{7} - \sqrt{5})}{(\sqrt{7})^2 - (\sqrt{5})^2}}[/tex]
[tex]=\sf{\dfrac{2(\sqrt{7} - \sqrt{5})}{7 - 5}}[/tex]
[tex]=\sf{\dfrac{2(\sqrt{7} - \sqrt{5})}{2}}[/tex]
[tex]=\sf{\dfrac{\not{2}(\sqrt{7} - \sqrt{5})}{\not{2}}}[/tex]
[tex]\boxed{\underline{\rm{\therefore\:\dfrac{2}{\sqrt{7} + \sqrt{5}} = \sqrt{7} - \sqrt{5}}}}[/tex]