Respuesta :
Using the data given, the 95% confidence interval of the true mean is (205.20 ; 230.20)
Given the data :
- 225 240 215 206 211 210 193 250 225 202
The confidence interval is defined as :
Since, sample size ls less than 30 we use a t-distribution table :
[tex] C.I = \bar{x} ± t_{α/2, n-1} \frac{s}{\sqrt{n}}[/tex]
- Zcritical = [tex]t_{0.05/2, 9} = 2.26 [/tex]
- n = sample size = 10
Using a calculator :
- Mean, [tex]\bar{x} = 217.7 [/tex]
- Standard deviation, σ = 17.49
Lower boundary = [tex] 217.7 - 2.26(\frac{17.49}{\sqrt{10}}) = 205.20[/tex]
Lower boundary = [tex] 217.7 + 2.26(\frac{17.49}{\sqrt{10}}) = 230.20[/tex]
Therefore, the confidence interval is (205.20 ; 230.20)
Learn more :https://brainly.com/question/25173276
The confidence interval is simply a range that contains the true mean of the population
The 95% confidence interval is [tex]\mathbf{(205,19, 230.20)}[/tex]
The given parameter is:
[tex]\mathbf{n = 10}[/tex]
Start by calculating the degree of freedom
[tex]\mathbf{df = n - 1}[/tex]
[tex]\mathbf{df = 10 - 1}[/tex]
[tex]\mathbf{df = 9}[/tex]
Next, calculate the mean
[tex]\mathbf{\bar x = \frac{\sum x}{n}}[/tex]
[tex]\mathbf{\bar x = \frac{225 + 240 + 215 + 206 + 211 + 210 + 193 +250 + 225 + 202}{10}}[/tex]
[tex]\mathbf{\bar x = \frac{2177}{10}}[/tex]
[tex]\mathbf{\bar x = 217.7}[/tex]
Calculate the standard deviation
[tex]\mathbf{\sigma = \sqrt{\frac{\sum (x - \bar x)^2}{n-1}}}[/tex]
[tex]\mathbf{\sigma = \sqrt{\frac{(225 -217.7)^2+ (240 -217.7)^2+..........+ (202 -217.7)^2}{10-1}}}[/tex]
[tex]\mathbf{\sigma = \sqrt{\frac{2752.1}{9}}}[/tex]
[tex]\mathbf{\sigma = 17.49}[/tex]
Calculate the standard error
[tex]\mathbf{SE = \frac{\sigma}{\sqrt n}}[/tex]
[tex]\mathbf{SE = \frac{17.49}{\sqrt {10}}}[/tex]
[tex]\mathbf{SE = 5.53}[/tex]
At 95%, df = 9. the t-value is:
[tex]\mathbf{t= 2.262}[/tex]
So, the confidence interval is:
[tex]\mathbf{CI = \bar x \pm t \times SE}[/tex]
So, we have:
[tex]\mathbf{CI = 217.7 \pm 2.262 \times 5.53}[/tex]
Split
[tex]\mathbf{CI = (217.7 - 2.262 \times 5.53, 217.7+ 2.262 \times 5.53)}[/tex]
[tex]\mathbf{CI = (205,19, 230.20)}[/tex]
Hence, the 95% confidence interval is [tex]\mathbf{(205,19, 230.20)}[/tex]
Read more about confidence intervals at:
https://brainly.com/question/2396419