Simplify the expression (Image below) Precalculus please help! D:

Answer:
[tex]\boxed{\sf \frac{x-4}{x^2-2x} }[/tex]
Step-by-step explanation:
[tex]\sf \cfrac{x+6}{x^2+3x}-\cfrac{5}{x^2+x-6}[/tex]
Factor x² + 3x, and x²+ x - 6
[tex]\sf \cfrac{x+6}{x(x+3)} -\cfrac{5}{(x-2)(x+3}[/tex]
To add or subtract expressions, we expand them to make their denominators the same, LCM of x(x+3) and (x-2)(x+3) is x(x-2) (x+3).
Multiply [tex]\sf \frac{x+6}{x(x+3)}\times \sf \frac{x-3}{x-2}[/tex] and [tex]\frac{5}{(x-2)(x+3)} \times \frac{x}{x}[/tex]
[tex]\sf \cfrac{(x+6)(x-2)}{x(x-2)(x+3)}-\cfrac{5x}{x(x-2)(x+3)}[/tex]
Here, [tex]\sf \frac{(x+6)(x-2)}{x(x-2)(x+3)}[/tex] and [tex]\sf \frac{5x}{x(x-2)(x+3}[/tex] have the same denominators, we will subtract them by subtracting their numerators:
[tex]\sf \cfrac{(x+6)(x-2)-5x}{x(x-2)(x+3)}[/tex]
*Multiply (x+6)(x-2)-5x:
[tex]\sf \cfrac{x^2-2x+6x-12-5x}{x(x-2)(x+3)}[/tex]
Combine like terms: x² - 2x + 6x - 12 - 5x
[tex]\sf \cfrac{-x-12+x^2}{x(x-2)(x+3)}[/tex]
Now, factor expressions that are not already factored:
[tex]\sf \cfrac{(x-4)(x+3)}{x(x-2)(x+3)}[/tex]
[tex]\sf \cfrac{x-4}{x(x-2)}[/tex]
Expand:
[tex]\sf \cfrac{x-4}{x^2-2x}[/tex]
__________________________