Respuesta :

An exponential function is represented as: [tex]\mathbf{f(x) = ab^x}[/tex]

The value of f(1) is 3.95

f(-2) = 1 means that:

[tex]\mathbf{ab^{-2} = 1}[/tex]

f(7) = 63 means that:

[tex]\mathbf{ab^{7} = 63}[/tex]

Divide both equations

[tex]\mathbf{\frac{ab^7}{ab^{-2}} = \frac{63}{1}}[/tex]

Apply law of indices

[tex]\mathbf{b^9 = 63}[/tex]

Take 9th root of both sides

[tex]\mathbf{b =1.58}[/tex]

Make a, the subject in [tex]\mathbf{ab^{-2} = 1}[/tex]

[tex]\mathbf{a = \frac{1}{b^{-2}}}[/tex]

[tex]\mathbf{a = b^2}[/tex]

Substitute [tex]\mathbf{b =1.58}[/tex]

[tex]\mathbf{a = 1.58^2}[/tex]

[tex]\mathbf{a = 2.50}[/tex]

So, we have:

[tex]\mathbf{f(x) = ab^x}[/tex]

[tex]\mathbf{f(x) = 2.50 \times 1.58^x}[/tex]

Substitute 1 for x

[tex]\mathbf{f(1) = 2.50 \times 1.58^1}[/tex]

[tex]\mathbf{f(1) = 3.95}[/tex]

Hence, the value of f(1) is 3.95

Read more about exponential functions at:

https://brainly.com/question/3127939

ACCESS MORE
EDU ACCESS