An exponential function is represented as: [tex]\mathbf{f(x) = ab^x}[/tex]
The value of f(1) is 3.95
f(-2) = 1 means that:
[tex]\mathbf{ab^{-2} = 1}[/tex]
f(7) = 63 means that:
[tex]\mathbf{ab^{7} = 63}[/tex]
Divide both equations
[tex]\mathbf{\frac{ab^7}{ab^{-2}} = \frac{63}{1}}[/tex]
Apply law of indices
[tex]\mathbf{b^9 = 63}[/tex]
Take 9th root of both sides
[tex]\mathbf{b =1.58}[/tex]
Make a, the subject in [tex]\mathbf{ab^{-2} = 1}[/tex]
[tex]\mathbf{a = \frac{1}{b^{-2}}}[/tex]
[tex]\mathbf{a = b^2}[/tex]
Substitute [tex]\mathbf{b =1.58}[/tex]
[tex]\mathbf{a = 1.58^2}[/tex]
[tex]\mathbf{a = 2.50}[/tex]
So, we have:
[tex]\mathbf{f(x) = ab^x}[/tex]
[tex]\mathbf{f(x) = 2.50 \times 1.58^x}[/tex]
Substitute 1 for x
[tex]\mathbf{f(1) = 2.50 \times 1.58^1}[/tex]
[tex]\mathbf{f(1) = 3.95}[/tex]
Hence, the value of f(1) is 3.95
Read more about exponential functions at:
https://brainly.com/question/3127939