The length of side NK in the given isosceles trapezoid is [tex]4\sqrt{3} \ cm[/tex]
From the question, we are to determine the length of NK
In the given diagram, consider ΔNKD
ΔNKD is a right-angled triangle,
From the question
[tex]ND = 4\sqrt{6} \ cm[/tex]
and
∠NDK = 45°
Let ∠NDK = θ
∴ θ = 45°
In the right-angled triangle, we can write that
[tex]Sin\theta = \frac{NK}{ND}[/tex]
∴ [tex]Sin45 ^{\circ} =\frac{NK}{4\sqrt{6} }[/tex]
Then,
[tex]NK = 4\sqrt{6} \times sin45^{\circ}[/tex]
But,
[tex]sin45^{\circ} = \frac{1}{\sqrt{2} }[/tex]
∴ [tex]NK = 4\sqrt{6} \times \frac{1}{\sqrt{2} }[/tex]
[tex]NK = \frac{4\sqrt{6} }{\sqrt{2} }[/tex]
Rationalizing
[tex]NK = \frac{4\sqrt{6} }{\sqrt{2} } \times \frac{\sqrt{2} }{\sqrt{2} }[/tex]
[tex]NK = \frac{4\sqrt{12} }{2}[/tex]
[tex]NK = 2\sqrt{12}[/tex]
[tex]NK = 2\sqrt{4\times3}[/tex]
[tex]NK = 2\times\sqrt{4} \times \sqrt{3}[/tex]
[tex]NK = 2\times2 \times \sqrt{3}[/tex]
∴ [tex]NK = 4\sqrt{3} \ cm[/tex]
Hence, the length of side NK is [tex]4\sqrt{3} \ cm[/tex]
Learn more here: https://brainly.com/question/23718625
The diagram for the question is attached below